Organophosphorus Chemistry 23 [1], The Reaction of α , β -Unsaturated Nitriles with Alkyl Phosphites and Phosphorus Ylides

Mohamed R. Mahran,* Wafaa M. Abdou, Naglaa M. Abd El-Rahman, and Maha D. Khidre

Dept. of Pesticide Chemistry, National Research Centre, Tahrir Street, Dokki, Cairo, Egypt Received 10 June, 1991.

ABSTRACT

Wittig reagents 2 react with furfurylidenemalonitrile (1a) and thienylidenemalonitrile (1b) to give a mixture of products (6 and 7). Compound 1b reacts with dialkyl phosphites (3) and trialkyl phosphites (4) to give the phosphonate 1:1 adducts 9 and 12, respectively. Structures of the new products were confirmed on the basis of elemental analyses and spectral studies.

INTRODUCTION

The chemistry of α,β -unsaturated nitriles has received a tremendous amount of interest both from theoretical and synthetic viewpoints [2, 3]. Although the reactivity of this class of compounds has been tested with a variety of reagents [3], no attention has been paid to its potentialities with respect to phosphorus ylides. In response to our growing interest in organophosphorus syntheses utilizing α,β unsaturated nitriles [4–7], we present now a study on the reaction of furfurylidenemalonitrile (1a) (also known as 1,1-dicyano-2-(2-furyl) ethylene and 2-furanylmethylenepropane dinitrile) and its sulfur analogue (1b) with resonance-stabilized ylide phosphoranes (2a-c). A comparative study of the behavior of 1b toward dialkyl phosphites (3a-c) and trialkyl phosphites (4a-c) is also reported.

RESULTS AND DISCUSSION

Furfurylidenemalonitrile (1a) was found to react with carbethoxymethylenetriphenylphosphorane (2b) in toluene at reflux for 12 h to give a mixture of two main products (A + B), which could be separated by column chromatography. Triphenylphosphine was also isolated and identified.

The first product (A, 53%) was assigned structure **6b** because its ³¹P-NMR spectrum (in CDCl₃) showed a signal at δ 24.6 that agrees with an ylide structure [8], and it excludes an alternative betaine structure such as $\mathbf{5}$ (Y = 0, R = COOC₂H₅). Moreover, the ¹H-NMR spectrum of **6b** (in CDCl₃) showed two signals due to the exocyclic methine protons at δ 3.15 (d of d, H(d), ${}^{3}J_{HP} = 10.5$ Hz) and δ 3.63 (d of d, H(e), ${}^{4}J_{HP} = 6.2$ Hz). The main features of the IR spectrum of **6b** (in KBr, expressed in cm⁻¹) were the presence of absorption bands at 2215 (-CN) and 1730 (C=0, ester). It also revealed the presence of strong bands around 1680 and 1510 cm⁻¹, characteristic of the C=P group absorption [9], and around 1430 and 990 for the P-C (phenyl) absorption. The second product (B, \sim 14%) has been found to be devoid of phosphorus, as is inferred from its elemental analyses and ³¹P-NMR measurements. It was identified as 1.1-dicyano 2-(2-furyl)-2-(carbethoxymethyl)ethylene (7b) for the following reasons: (a) Its elemental analysis and molecular weight determination (MS) agreed with the molecular formula, $C_{12}H_{10}N_2O_3$; (b) The IR spectrum of **7b** (KBr, cm⁻¹) showed a strong band due to the exocyclic C=C group at 1645 cm⁻¹ (recorded with **1a** at 1640 cm⁻¹). Bands were also present at 2230 (-CN), 1715 (C=O, ester) and 1605 (C=C, furan) [10]; (c) The ¹H-NMR spectrum of **7b** (in CDCl₃, δ) showed sig-

Dedicated to Professor M. Sidky on the occasion of his sixty-second birthday.

^{*}To whom correspondence should be addressed.

$$(c) \quad (d) \quad CN \quad (C_6H_5)_3 P = C \qquad (C_6H_5)_4 P$$

$$(RO)_2\ddot{P}OH \longrightarrow RO_2P(O)H$$
 $(RO)_3P$

Cpd.	R	Cpd.	R
2a b c	COOCH ₃ COOC ₂ H ₅ COC ₆ H ₅	3,4 a b c	CH ₃ C ₂ H ₅ C ₃ H ₇ -i

$$(H_5C_6)_3P-CH-R$$

$$+$$

$$V=0,S$$

$$(H_5C_6)_3P$$

Cpd.	Υ	R	Cpd.	Υ	R
a	0 0	COOCH ₃	d	S	COOCH ₃
b		COOC ₂ H ₅	e	S	COOC ₂ H ₅
c		COC ₆ H ₅	f	S	COC ₆ H ₅

SCHEME 1

nals at 1.25 (t, 3H, ethoxy- CH_3), and 2.65 (s, 2H, CH_2), and at 4.35 (q, 2H, OCH_2) [10]. The familiar pattern of the furan ring protons was represented by signals at δ 6.42 (H(a), d, $J_{HH} = 2.5$ Hz), 6.59 $(H(b), d \text{ of } d, J_{HH} = 3 \text{ Hz}) \text{ and } 7.46 (H(c), d, J_{HH} =$ 2.5 Hz). Evidence against an alternative structure such as $8 (R = COOC_2H_5)$ is the absence of absorption of olefinic nature (other than the furans) in the region δ 5.0-8 as well as the absence of a signal (singlet) due to the $CH(CN)_2$ group proton in the region of δ 3–5 [10].

The reaction products of 1a with 2a,c (and of 1b with 2a-c) were assigned analogous structures (see 6a-f and 7a-f) on the basis of comparable spectroscopic arguments (see Tables 1 and 2).

Apparently, the initial step involves nucleophilic attack by the anionic center in 2 on the more electrophilic site of the exocyclic ethylenic linkage in 1 to give the resonance hybrid 5. The R-moiety in 5, which is electron-withdrawing in nature, would stabilize formation of the phosphorus ylide structure 6 (major) via the migration of the proton α to the positive phosphorus atom to the electron rich carbanionic center of the initially formed intermediate. On the other hand, the dipolar form 5 undergoes an elimination reaction [11] with ejection of TPP to produce 7 as a minor reaction product (Scheme 1).

Thienylidenemalonitrile (1b, also known as 2thienylmethylenepropanedinitrile) has been found to react with dimethyl-, diethyl-, and/or diisopropyl phosphites (3a-c) at 100°C in absence of solvent to give 1:1 adducts for which structures 9a-c were assigned (Scheme 2) for the following reasons: (a) Satisfactory elementary analyses and molecular weight determinations (MS) were recorded for all products; (b) Adducts 9 showed positive chemical shifts around δ 23 (vs. 85% H₃PO₄) in their ³¹P-NMR spectra, which indicates the presence of a P-C linkage in their molecules [8]; (c) Upon heating adducts 9a-c above their melting points under reduced pressure, they regenerated the starting materials

TABLE 1 Analytical Data and Physical Properties of the Products 6 and 7

	Violah		Mal Farm	Anal. Found/(Calcd.)%					1.1+
Compound	Yield⁵ in %		Mol. Form. (M.Wt)	С	Н	N	P	S	M⁺ m/z%
6a	50	130-131°	C ₂₉ H ₂₃ N ₂ O ₃ P	72.77	4.83	5.74	6.29	_	478
			(478.48)	(72.79)	(4.84)	(5.85)	(6.47)		28
6b	53	167–170°	$C_{30}H_{25}N_2O_3P$	73.09	5.10	5.65	6.07		492
			(492.51)	(73.16)	(5.11)	(5.68)	(6.28)		22
6c	62	182-184°	$C_{34}H_{25}N_2O_2P$	77.76	4.82	5.31	5.87		524
			(524.55)	(77.85)	(4.80)	(5.33)	(5.90)	_	33
6d	40	$137-139^{c}$	$C_{29}H_{23}N_2O_2PS$	70.33	4.62	5.58	6.09	6.37	494
			(494.55)	(70.43)	(4.68)	(5.66)	(6.26)	(6.48)	31
6e	46	144-145 ^d	C ₃₀ H ₂₅ N ₂ O ₂ PS	70.78	4.92	5.55	6.17	6.26	508
			(508.59)	(70.85)	(4.95)	(5.50)	(6.09)	(6.30)	18
6f	58	156-157 ^d	C ₃₄ H ₂₅ N ₂ OPS	75.47	4.64	5.09	5.66	`5.90 [°]	540
			(540.62)	(75.53)	(4.66)	(5.18)	(5.72)	(5.93)	22
7a	10	$74-75^{e}$	$C_{11}H_8N_2O_3$	60.80	3.67	12.87	` — <i>'</i>	`— ′	216
			(216.19)	(61.11)	(3.72)	(12.95)			48
7b	14	$66-67^{e}$	$C_{12}H_{10}N_2O_3$	62.56	4.33	12.05			230
			(230.22)	(62.60)	(4.38)	(12.17)			55
7c	17	91-93 ^d	$C_{16}H_{10}N_2O_2$	`73.21 [′]	`3.67 [′]	`10.57 [´]			262
			(262.27)	(73.27)	(3.84)	(10.68)			60
7d	8	61-63 ^e	$C_{11}H_8N_2O_2S$	56.46	3.43	11.79	_	13.67	232
			(232.26)	(56.88)	(3.47)	(12.06)		(13.80)	42
7e	10	56-57 ^e	$C_{12}H_{10}N_2O_2S$	58.22	4.14	11.18	_	`13.88 [′]	246
			(246.28)	(58.52)	(4.09)	(11.37)		(13.01)	55
7f	20	80-81 [′]	C ₁₆ H ₁₀ N ₂ OS	`69.01 [′]	3.60	`10.23 [′]		11.26	278
			(278.33)	(69.04)	(3.62)	(10.06)		(11.52)	68

^a IR spectra of compounds **6** and **7** also showed bands around 2220 (CN) and around 1610 (C=C , furan or thiophene). Compounds

⁶a-f have signals ~1700 (C=O), 1650, 1540 (C=P), and at 1450 cm⁻¹ (P-phenyl) in their IR spectra, while compounds 7a-f have absorption bands at ~1710 (C=O) and at ~1650 (C=C) in their IR spectra. bYields are approximate.

solvent of cryst:

^cBenzene.

dChlorform.

Pentane.

^{&#}x27;Cyclohexane.

TABLE 2 ¹H and ³¹P NMR data^a for Compounds 6 and 7

		¹H(δ,			
Compound	C-CH ₃	-CH(d)	-CH(e)	OCH ₃ , OCH ₂	(δ^{31p}, ppm)
6a		3.15 (dd, 1H) ${}^{3}J_{HP} = 9.2$ $J_{HH} = 18.1$	3.63 (dd, 1H) ${}^{4}J_{HP} = 6.5$ $J_{HH} = 18.1$	3.80 (s, 3H)	21.7
6b	1.3 (t, 3H) $J_{HH} = 6.4$	3.15 (dd, 1H) ${}^{3}J_{HP} = 10.58$ $J_{HH} = 18.03$	3.63 (dd, 1H) $J_{HP} = 6.2$ $J_{HH} = 18.03$	4.26 (q, 2H) $J_{HH} = 6.06$	24.6
6c		3.2 (dd, 1H) ${}^{3}J_{HP} = 11.5$ $J_{HH} = 16.14$	3.54 (dd, 1H) $J_{HP} = 6.5$		20.3
6d		2.95 (dd, 1H) $^{3}J_{HP} = 10.50$ $J_{HH} = 18.55$	3.55 (dd, 1H) ${}^{4}J_{HP} = 4.5$ $J_{HH} = 18.55$	4.24 (s, 3H)	24.6
6e	1.21 (t, 3H) $J_{HH} = 6.06$	3.4 (dd, 1H) ${}^{3}J_{HP} = 13.51$ $J_{HH} = 18.0$	3.72 (dd, 1H) ${}^4J_{HP} = 4.5$	$J_{HH} = 6.07$	20.3
6f		3.1 (dd, 1H)			22.7
7a		2.7 (s, 2H)		3.88 (s, 3H)	_
7b 7c 7d	1.25 (t, <i>J</i> 6.3, 3H)	2.65 (s, 2H) 3.21 (s, 2H) 2.48 (s, 2H)		4.35 (q, <i>J</i> 7.4, 2H) 3.85 (s, 3H)	_
7e 7f	1.61 (t, <i>J</i> 7.2, 3H)	2.53 (s, 2H) 2.88 (s, 2H)		3.94 (q, <i>J</i> 7.08, 2H)	

^a See experimental for details for NMR experiments.

$$(RO)_{2}P^{\circ} + S CH = CCN (CN)_{2} CH(e)$$

$$O = P(OR)_{2}$$

SCHEME 2

 $[^]b$ Coupling constant is recorded in Hertz. c Furan, thiophene and aromatic hydrogen protons lie in δ 6.4–8.4 region.

(1b + DAP); (d) The IR spectrum (KBr, cm^{-1}) of **9a**, taken as an example, revealed the presence of absorption bands at 2230 (CN), 1610 (C=C, thiophene), 1260 (P=O, free), and at 1050 (P-O-CH₃) [10]; (e) The ¹H-NMR spectrum of **9a** (CDCl₃, δ) showed the thiophene ring-protons as a multiplet centered at 7.4 (3H). The two methoxyl groups appeared as a doublet (6H, ${}^{3}J_{HP} = 12 \text{ Hz})$ at $\delta 3.77$. On the other hand, the exocyclic ethylenic proton (d) present in the ¹H-NMR spectrum of **1b** at δ 7.45 was absent in the spectrum of 9a. Instead, each of the exocyclic methine protons (2H) in 9a appeared as a doublet of doublets. That of proton (d) was centered at 4.0 with ${}^{2}J_{HP} = 22.6$ Hz, while the other proton $[H(e), CH(CN)_2]$ was centered at 4.54 with ${}^{3}J_{HP} = 12 \text{ Hz}$. The presence of the AB system, H(d)-H(e), and lack of a signal resulting from a methylene group (see 10) in the ¹H-NMR spectrum of 9a confirm the assigned structure 9 and rule out the other alternative structure 10 from further consideration.

The reaction of **1b** with trimethyl-, triethyl-, and triisopropyl phosphites (4a-c) was completed by heating the reactants at 100°C in the absence of solvent for 6 h to give colorless crystalline adducts for which structures 12a-c were assigned (Scheme 3). Evidence for structure 12 are: (a) The ³¹P-NMR spectra of 12 showed chemical shifts at δ 19 indicating that they are phosphonates; (b) Elemental analysis and MS for 12a, taken as example, corresponded to C₁₁H₁₃N₂O₃PS; (c) The IR spectrum of 12a (KBr, cm⁻¹) disclosed strong absorption bands at 1275 (P=O, free) and at 1030 cm^{-1} (P-O-CH₃); (d) The ¹H-NMR spectrum of **12a** (CDCl₃, δ) showed protons of the P(O)(OCH₃)₂ groups (6H) as a doublet $(^{3}J_{HP} = 12 \text{ Hz})$ at δ 3.63. It also showed a doublet (3H, ${}^4J_{\rm HP}=4.5$) at δ 1.90. This value is in accordance with a chemical shift expected for a methyl

group on an sp³-carbon atom containing two electron-withdrawing groups [10]. The exocyclic methine proton (d) appeared as a doublet at δ 4.37 (${}^2J_{HP}$ = 24.5 Hz). The data recorded for proton (d) can positively confirm the assigned structure 12 and exclude structure 13, which would predict a quintet for the exocyclic methine proton and a doublet of doublets resulting from the CH₃-protons.

CONCLUSIONS

The reaction of 1a,b with stabilized ylide-phosphoranes (2) to give products of type 7 represents a novel process for alkylating α,β -unsaturated nitriles. This new finding supplements the wide aspects for utilization of Wittig reagents in preparative work [11, 12]. In addition, the reaction of 1b with 4a-c to give 12 adds a new dimension to the line we have recently explored [4–7] for C-alkylation of α - β -unsaturated nitriles by trialkyl phosphites. It is also important to note that C-alkylation of the α - β -unsaturated system in 1 by phosphorus-ylides and TAP is regiospecific.

EXPERIMENTAL

All melting points are uncorrected. The IR spectra were run on a Perkin Elmer Infracord Spectrometer Model 197 (Grating) in KBr. The ¹H-NMR spectra are recorded with a Bruker Spectrometer Model WH-90 and the chemical shifts are recorded in δ relative to TMS. The ³¹P-NMR spectra were taken on a Varian CFT20 (vs. external 85% H₃PO₄). The mass spectra were done at 70 eV with MS-50 Kratos (A.E.I.) Spectrometer provided with data system. Elemental analyses were carried out at the "Microanalysis Laboratory, National Research Centre, Cairo."

$$1b + (RO)_{3}P$$

$$4$$

$$(b) (c) H(d) CN$$

$$C - C - CN$$

$$O = P OR$$

$$12 (R as in 4)$$

$$CH_{3} O = P(OCH_{3})_{2}$$

$$13 (not detected)$$

SCHEME 3

Reaction of α, β-Unsaturated Nitriles (1a,b) with Phosphorus Ylides (2a-c): General Procedure

To a suspension of nitrile **1a** [13] or **1b** [14] (0.01 mol) in dry toluene (30 mL) was added a solution of ylide 2a [15], 2b [15], and/or 2c [16] (0.011 mol) in the same solvent (20 mL), and the reaction mixture was refluxed for 10-15 h (TLC). The reaction mixture was then evaporated at 60°C under reduced pressure. The solid product was redissolved in methanol (100 mL) and evaporated to dryness in the presence of silica gel (5 g). The mixture was then added to a column previously charged with silica gel in petroleum ether. The column was developed with petroleum ether followed by petroleum ether containing increasing amounts of ethyl acetate. A fraction from 100% petroleum ether afforded colorless needles, mp 80°C (ca. 70% yield) of triphenylphosphine (mp, mixed mps, and comparative IR spectra) [17].

The next fraction (up to 4:1 v/v petroleum ether/ethyl acetate) eluted a yellow substance that was recrystallized from the suitable solvent to give 7a–f. For yields, mps, physical, and analytical data see Tables 1 and 2.

The next fraction (up to 5:5 v/v petroleum ether/ethyl acetate) yielded a brown substance, recrystallized to give **6a–f** (see Tables **1** and **2**).

Reaction of Thienylidenemalonitrile (1b) with Dialkyl Phosphonates (3a-c): General Procedure

A mixture of **1b** (0.01 mol) and dialkyl phosphites (dimethyl-, diethyl-, or diisopropyl phosphite) (6 mL)

was heated in the absence of solvent at 100°C for 10 h. After the reaction had been completed (TLC), the volatile materials were evaporated, *in vacuo*, and the residual substance was collected and recrystallized from the appropriate solvent (see Table 3) to give compounds **9a-c**. Percentage yields, physical, and analytical data for compounds **9** are given in Tables **3** and **4**.

Action of Heat on 9

The phosphonate adduct **9a** (0.5 g), taken as example, was heated (bath temperature, 230°C) for 1 h under reduced pressure (5 mm Hg) in a cold finger sublimator. The reaction vessel was left to cool and ethyl alcohol (5 mL) was added. The crystals that separated were recrystallized from ethanol to give the nitrile **1b** (identified by mp, mixed mps and comparative IR, PMR, and MS spectra [14]. Dimethyl phosphonate was detected in the receiver by the development of a violet color on addition of 3,5-dinitrobenzoic acid in the presence of alkali [18].

Reaction of Thienylidenemalonitrile (1b) with Trialkyl Phosphites (4a-c): General Procedure

A mixture of **1b** (0.01 mol) and trialkyl phosphites (trimethyl-, triethyl-, or triisopropyl phosphite) (5 mL) was heated in the absence of solvent at 100°C for 6 h. After removal of the volatile materials, *in vacuo*, the residue was triturated with light petroleum ether and left to cool. The solid was collected, and recrystallized from a suitable solvent to give

TABLE 3 Analytical Data and Physical Properties of the Products 9 and 12

	Violat	mp °C	14-1 Fame	Anal. Found/(Calcd.), %					M +
Compounda	Yield in %		Mol. Form. (M.Wt)	С	Н	N	Р	S	m/z%
9a	76	114-116 ^b	C ₁₀ H ₁₁ N ₂ O ₃ PS	45.02	4.14	10.33	11.22	11.62	270
			(270.24)	(44.49)	(4.10)	(10.36)	(11.46)	(11.86)	100
9b	68	106-107°	C ₁₂ H ₁₅ N ₂ O ₃ PS	48.27	5.01	9.27	10.09	10.84	298
			(298.25)	(48.32)	(5.06)	(9.39)	(10.38)	(10.72)	100
9c	70	146-148 ^d	C ₁₄ H ₁₉ N ₂ O ₃ PS	`51.35 [°]	`5.55 [°]	8.53	` 9.18 [′]	9.77	326
			(326.35)	(51.53)	(5.87)	(8.58)	(9.49)	(9.82)	100
12a	75	107-109 ^e	$C_{11}H_{13}N_2O_3PS$	`46.27	`4.57 [°]	9.86	10.94	11.06	284
			(284.27)	(46.47)	(4.60)	(9.85)	(10.89)	(11.28)	68
12b	82	87-90°	$C_{14}H_{19}N_2O_3PS$	`51.50 [′]	5.48	8.09	9.44	9.99	326
			(326.35)	(51.52)	(5.86)	(8.58)	(9.49)	(9.82)	75
12c	60	120-121 ^t	$C_{17}H_{25}N_2O_3PS$	55.71	6.73	7.56	`8.48	8.27	368
		·	(368.43)	(55.42)	(6.84)	(7.60)	(8.41)	(8.70)	83

^aIR spectra of the products **6** and **7** also showed bands around 2220 (CN) and around 1610 (C=C , furan or thiophene). Compounds

⁹a-c and 12a-c gave absorption bands at ~1250 (P=O) and at ~1035 cm-1 (P-O-C) in their IR spectra.

^bBenzene/pet. ether (b.r. 40–60°C).

[°]Cyclohexane.

dEther.

Pentane.

^{&#}x27;Acetone.

TABLE 4 ¹H and ³¹P NMR data^a for the adducts 9 and 12

	$^{1}H(\delta, ppm)^{b,c}$							
Compound	C-CH ₃	C-CH ₂ , C-CH	OCH ₃ , OCH ₂ , OCH	HC-P	C-CH	(δ^{31p}, ppm)		
9a			$3.65, 3.83 (2d)^d$ ${}^3J_{HP} = 12.0$	4.0 (d of d) $^{2}J_{HP} = 22.6$ $J_{HH} = 15.4$	4.54 (d of d) ${}^{3}J_{HP} = 12.0$ $J_{HH} = 15.4$	23.0		
9b	1.22 (2dt) ${}^{3}J_{HP} = 12.0$ $J_{HH} = 4.3$		6H $4.08 (2 \text{ qt})^e$ $J_{HP} = 12.05$ $J_{HH} = 4.3$	$J_{\rm HH} = 15.6$	1H 4.6 (d of d) ${}^{3}J_{HP} = 12.05$ $J_{HH} = 15.6$	23.2		
9c	6H 1.31 (2 dd) ${}^{3}J_{HP} = 11.5$ $J_{HH} = 4.0$		4H 4.2, 4.62 (2m) ^f	1H	1H	22.6		
12a	12H 1.93 (dd) ${}^{4}J_{HP} = 4.5$ $J_{HH} = 6.2$		4H 3.5, 3.7 (2d) ${}^{3}J_{HP} = 13.5$	4.37 (dd) $^{2}J_{HP} = 24.5$ $J_{HH} = 6.2$		19.9		
12b	3H 1.28 (m)	2.13 (q) $J_{HH} = 6.2$ $J_{HP} = 4.5$	6H 4.19 (2 qt) $J_{HH} = 6.2$ $J_{HP} = 11.5$	1H 4.4 (dd) $^{2}J_{HP} = 24.0$ $J_{HH} = 5.5$		19.9		
12c	9H 1.25 (m)	2H 2.84 (sept.) J _{нн} = 6.4	4H 4.55 (2 sept.) J _{HH} = 6.4	1H 4.68 (dd) $^{2}J_{HP} = 24.5$ $J_{HH} = 5.8$		18.9		
	18H	J _{HP} = 4.5 1H	J _{HP} = 11.5 2Н	и _{нн} — 5.6 1Н				

^a See experimental for details for NMR experiments.

compounds **12a–c**. Physical and analytical data for compounds 12 are presented in Tables 3 and 4.

REFERENCES

- [1] For part 22, see W. M. Abdou, M. D. Khidre, M. R. Mahran, Phosphorus, Sulfur and Silicon, 61, 1991, 83.
- [2] A. F. Meyer, J. C. Sircar: Addition to the Cyano-group to form Heterocycles, in Z. Rapaport (ed): The Chemistry of Cyano Group, John Wiley and Sons, New York, p. 341 (1970).
- [3] F. Freeman, Chem. Revs., 69, 1969, 591; S. Kambe, A. Sakurai, H. Midorikawa, Synthesis, 1981, 531.
- [4] M. R. Mahran, W. M. Abdou, N. M. Abdelrahman, M. M. Sidky, Phosphorus, Sulfur and Silicon, 45, 1989,
- [5] M. R. Mahran, W. M. Abdou, N. A. F. Ganoub, H. A. Abdallah, Phosphorus, Sulfur and Silicon, 57, 1991, 217.
- [6] W. M. Abdou, N. A. F. Ganoub, M. R. Mahran, Bull. Chem. Soc. (Japan), 64, 1991, 747.
- [7] W. M. Abdou, M. D. Khidre, M. R. Mahran, J. Prakt. Chem., 332, 1990, 1029.

- [8] M. M. Crutchfield, O. H. Dungan, J. H. Letcher, V. Mark, J. R. van Wazer, in Topics in Phosphorus Chemistry, vol. 5, Interscience Publishers, New York, pp. 227-447 (1967).
- [9] F. Ramirez, O. P. Madan, C. P. Smith, J. Org. Chem., 30, 1965, 2284; F. Ramirez, O. P. Madan, S. R. Heller, J. Am. Chem. Soc., 87, 1965, 731.
- [10] R. M. Silverstein, G. C. Bassler, T. C. Morril, Spectroscopic Identification of Organic Compounds, John Wiley and Sons, Inc., New York, 1981.
- [11] I. Gosney, A. G. Rowley, Wittig Reactions, in J. I. G. Cadogan (ed): Organic Phosphorus Reagents in Organic Synthesis, Academic Press, London, 1979.
- [12] A. Wm. Johnson, Ylid Chemistry, Academic Press, New York, 1966.
- [13] R. Heuck, Chem. Ber., 28, 1985, 2253.
- [14] S. W. Schneller, D. R. Moore, J. Org. Chem., 40, 1975,
- [15] H. J. Bestmann, O. Kratzer, Chem. Ber., 95, 1962, 1894.
- [16] F. Ramirez, S. Dershowitz, J. Org. Chem., 22, 1957,
- [17] A. Michaelis, I. Gleichman, Chem. Ber., 15, 1962, 1894.
- [18] B. C. Saunders, B. P. Stark, Tetrahedron, 4, 1958, 187.

^b Coupling constant is recorded in Hertz.

 $^{^{\}rm c}$ Thiophene hydrogen protons lie in δ 6.4–7.8 ppm region.

The two methoxyl groups attached to the phosphorus atom appeared as two doublets. This splitting is probably the result of the asymmetry of the molecule [7].

at: quintet.

^{&#}x27;The signal appears as a complex multiplet wherein the exocyclic methine protons (2H) are obscured by the two septets.